Official Syllabus

Math 223: Logic and Mathematical Reasoning

(Adopted Fall 2009; Committee: Drs. A. Neath, A. Weyhaupt, Course objectives added October 2014 by Department consent)

Catalog Description: Concepts and techniques essential to advanced mathematics: logic, methods of proof, sets, relations, induction, functions, cardinality, combinatorics and graph theory. Prerequisite: MATH 150. (2 Lecture hrs. plus 2 hr. lab).

Textbook: Smith, Eggen, St. Andre, *A Transition to Advanced Mathematics*, 7th Edition, Thomson Brooks Cole.

Chapter	Sections	Class Periods
1. Logic and	1. Propositions and Connectives	6
Proof	2. Conditionals and Biconditionals	
	3. Quantifiers	
	4. Basic Proof Methods I	
	5. Basic Proof Methods II	
	6. Proofs Involving Quantifiers	
	7. Additional Examples of Proofs	
2. Set Theory	1. Basic Concepts of Set Theory	9
	2. Set Operations	
	3. Extended Set Operations and Index Families of Sets	
	4. Induction	
	6. Principles of Counting	
	(Previously, 4 lectures were devoted to counting and	
	combinatorial proofs. We have developed a short supplement	
	for this material to augment <i>Transition</i> .)	
3. Relations	1. Cartesian Products and Relations	6
	2. Equivalence Relations	
	3. Partitions	
	5. Graphs	
	(Transition does not discuss Hamiltonian cycles, Euler cycles,	
	or the adjacency matrix. We have developed a short	
	supplement for this material.)	
4. Functions	1. Functions as Relations	4
	2. Constructions of Functions	
	3. Functions That Are Onto; One-to-One Functions	
	4. Images of Sets	
5. Cardinality	1. Equivalent Sets; Finite Sets	2
	2. Infinite Sets	

Schedule has 3 days for exams or optional material. Schedule assumes two 110-minute class periods per week. Approximately 75 minutes of a class period should be devoted to lecture with the remaining 35 minutes a problem solving session.

Course objectives:

At the conclusion of this course, students should be able to:

- 1) perform computations involving logic, sets, functions, and graphs
- 2) construct proofs using the following techniques: direct, contrapositive, contradiction, induction, and combinatorial
- 3) construct proofs involving basic number theory (divisibility, gcd, parity, rational numbers), sets, relations and partitions, functions (including injective and surjective properties), cardinality, and basic graph theory
- 4) use counting techniques to count sets of moderate complexity

Any instructor should cover all of the material specified; additional sections are optional.